
PCNsim

Gabriel Rebello and Gustavo Camilo

Mar 16, 2023





CONTENTS

1 Getting Started 3

2 Commands Reference 7

i



ii



PCNsim

A reliable and modular open-source payment channel network simulator based on the Lightning Network.

CONTENTS 1



PCNsim

2 CONTENTS



CHAPTER

ONE

GETTING STARTED

1.1 Prerequisites

Before using PCNsim simulator, you need the following programs installed. PCNsim is available for Linux OS and
Windows.

Warning: Although PCNsim is available in Windows OS, this documentation follows the commands used in
Linux. Some command might change depending on the operating system that you run.

1.1.1 Install Git

Make sure you have git installed on your device.

1.1.2 Install Python

PCNsim requires Python v3.8 to execute every module correctly. You can find every available Python version for
download at the official Python website. If you already have Python 3 installed, you can verify the python version you
have by executing the following command:

$ python3 --version

1.1.3 Install OMNET++

PCNsim runs over OMNET++ to deliver a user-friendly interface, modular, and reliable network simulation. You can
find OMNET++ installation guide in the official OMNET++ website.

1.2 Installing PCNsim

After checking if you meet the correct requirements of PCNsim, you can install install PCNsim.

First, clone our Github respository:

$ git clone https://github.com/gfrebello/pcnsim

After cloning the repository, install the necessary libraries to run PCNsim:

3

https://git-scm.com/downloads
https://www.python.org/downloads/
https://omnetpp.org/


PCNsim

$ cd pcnsim
$ pip install -r requirements.txt

You may want to create a environment variable that points to the pcnsim source directory:

$ export PCNSIM_DIR = $PWD

1.2.1 Installing the Dataset

As real-world transaction data about the Lightning Network is not available due to privacy, PCNsim uses a credit-card
dataset to model transactions on the network simulator. As PCNs aim to offer a payment method as fast as current
credit-card companies, we argue that credit-card transactions are a good fit to model transactions size. The credit-card
dataset used to model transactions in PCNSim is available at Kaggle.

After downloading the creditcard dataset, move the csv file to the datasets folder:

$ mv creditcard.csv $PCNSIM_DIR/scripts/datasets

Note: If you are having problems installing PCNsim, you can contact our team. Our contact information is available
at the official PCNsim website.

1.3 Testing Your PCNsim

After downloading and installing the required components to run PCNsim, you can test your simulator by following
this documentation. Our test simulation delivers the following scenario:

• ten nodes disposed in a scale-free network topology;

• one hundred transactions issued in the network. It’s worth mentioning that the transactions are only issued by
the end-hosts to simulate the behavior of the Lightning Network accurately;

• the channel values follow real-world Lightning Network values;

• the transaction values follow credit-card transaction values collected from a dataset.

1.3.1 Creating Network Topology and Transaction Workload

The first step in running the simulation is determining which network topology PCNsim will use to run the payment
channel network. PCNsim offers scale-free and small-world topology by default given researches show that the Light-
ning Network behaves as both. It is possible to implement other network topologies by implementing them with Net-
workX or by defining them in the topology file. To build the scenario described in this documentation, from the pcnsim
root directory, go to the scripts directory:

cd script

To generate the network topology described in this section of the documentation, run the genTopo command specifying
10 as the number of nodes and the channel modelling following the Lightning Network:

python3 generate_topology_workload.py genTopo -n 10 --lightning

4 Chapter 1. Getting Started

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://gta.ufrj.br/pcnsim


PCNsim

This command will generate a file in the topologies directory. This file will be used by OMNET++ to establish the
connections among the nodes and channel parameters. After generating the topology, you’ll have to generate the
transaction workload, which defines the characteristics of the transactions in the simulation. PCNsim offers transaction
modelling following a real-world data from a credit-card company or an e-commerce sales dataset. You can also
customize the workload by directly modifying the workload file. To generate the transaction workload of our scenario,
run the `genWork`command specifying credit-card as the modelling reference and `100`as the number of transactions:

python3 generate_topology_workload.py genWork --n_payments 100 --credit-card

This command generates a file in the workloads directory.

Note: For more information on the commands and their options, check the Commands Reference section of the
documentation.

1.3.2 Running the Simulation

After generating the topology and workload, you can run PCNsim by opening the project on OMNET++ and running
the simulation.

Before starting to develop applications in PCNsim, check if you meet all the Prerequisites and programs installed on
your device. You’ll not be able to run PCNsim without the described requisites.

After installing all prerequisites, you can follow to Testing Your PCNsim and start working with PCNsim on your local
device.

1.3. Testing Your PCNsim 5



PCNsim

6 Chapter 1. Getting Started



CHAPTER

TWO

COMMANDS REFERENCE

2.1 genTopo

2.1.1 Description

The genTopo command generates a network topology to be used in the payment channel network simulator. PCNsim
offers network topology modeling following a small-world topology or a scale-free topology as the Lighnint Network
presents behavior similar to both types.

2.1.2 genTopo

Usage: generate_topology_workload.py genTopo [OPTIONS]

Generates a topology for the simulation

Options:
-t, --topology [scale-free|barabasi-albert|watts-strogatz]

Topology used in the simulation
-n, --nodes INTEGER Number of nodes in the topology
--alpha FLOAT Alpha parameter for scale-free topology
--beta FLOAT Beta parameter for scale-free topology
--gamma FLOAT Gamma parameter for scale-free topology
-k INTEGER K parameter for Watts-Strogatz graph
-p FLOAT P parameter for Watts-Strogatz graph
-m INTEGER M parameter for Barabasi-Albert graph
--lightning Channel capacities are modeled following

real-world lightning network channels

--help Show this message and exit.

7



PCNsim

2.1.3 Default Values

• -t, --topology: Type of network topology that will be used to run the PCN simulation. We offer 3 types of
network topology: scale-free, Barabasi-Albert, and Watts-Strogatz. It’s worth noting that Barabasi-Albert and
Watts-Strogatz graph model are small-world topology. The user may choose the network topology by select-
ing the topology option followed by the string "scale-free", "barabasi-albert", or "watts-strogatz",
depending on the type of topology the the user choses.

– Default value: "scale-free"

• -n, --nodes: Number of nodes that make up the network topology. This value has to be an integer.

– Default value: 10

• --alpha: Parameter alpha used to generate a scale-free network topology. This parameter is only used if the
scale-free topology is chosen to model the network. Alpha is a float type parameter.

– Default value: 0.5

• --beta: Parameter beta used to generate a scale-free network topology. This parameter is only used if the
scale-free topology is chosen to model the network. Beta is a float type parameter.

– Default value: 1e-05

• --gamma: Parameter gamma used to generate a scale-free network topology. This parameter is only used if the
scale-free topology is chosen to model the network. It’s worth noting that alpha + gamma = 1. Gamma is
a float type parameter.

– Default value: 0.49999

• --k: Parameter k used to generate a scale-free network topology. This parameter is only used if the
watts-strogatz topology is chosen to model the network. K is an integer type parameter.

– Default value: 2

2.1.4 Example Usage

• Model channels following the real-world Lightning Network channel capacity. It’s worth mentioning that this
options does not model the network topology following the Lightning Network topology, only its channel pa-
rameters. The network topology follows a scale-free network model.

$ python3 generate_topology_workload.py genTopo --lightning

Setting topology to scale-free
Setting n to 10
Setting alpha to 0.5
Setting beta to 1e-05
Setting gamma to 0.49999

8 Chapter 2. Commands Reference



PCNsim

2.2 genWork

2.2.1 Description

The genWork command generates a transaction workload to be used in the payment channel network simulator. PCN-
sim offers genWork modeling following a real-world data from a credit-card and an e-commerce dataset as the Lighnint
Network does not disclose transaction information due to privacy issues.

2.2.2 genWork

Usage: generate_topology_workload.py genWork [OPTIONS]

Generates a payment workload for the simulation

Options:
--n_payments INTEGER Number of payments in the network simulation
--min_payment FLOAT Minimum value of a payment in the network
--max_payment INTEGER Maximum value of a payment in the network
--any_node Transactions are issued by any node in the network,

not only end hosts

--credit_card Transactions are modeled following a credit card
dataset

--e_commerce Transactions are modeled following a e-commerce
dataset

--help Show this message and exit.

2.2.3 Default Values

• --n_payments: Number of payments in the PCN simulation. The selected number of payments will be issued
by a randomly selected node to another randomly selected node. This value as to be an integer.

– Default value: 1

• --min_payments: Minimum value of a payment in the PCN simulation. This value has to be an float.
– Default value: 0.1

• --max_payments: Maximum value of a payment in the PCN simulation. This value has to be an float.
– Default value: 1

2.2. genWork 9



PCNsim

2.2.4 Flags

• --any_node: By default, PCNsim restricts the act of issuing a transaction to end-hosts. Therefore, core nodes
act only as intermediary, forwarding trasactions, but not issuing. This flag removes this restriction and includes
core nodes in the act of issuing transactions.

• --credit_card: This flag makes PCNsim model transaction values following a credit-card dataset.

• --e_commerce: This flag makes PCNsim model transaction values following an e-commerce dataset.

2.2.5 Example Usage

Note: If you still have questions about PCNsim not covered by this documentation, please visit https://gta.ufrj.br/
pcnsim webpage to find contact information for additional help.

10 Chapter 2. Commands Reference

https://gta.ufrj.br/pcnsim
https://gta.ufrj.br/pcnsim

	Getting Started
	Prerequisites
	Install Git
	Install Python
	Install OMNET++

	Installing PCNsim
	Installing the Dataset

	Testing Your PCNsim
	Creating Network Topology and Transaction Workload
	Running the Simulation


	Commands Reference
	genTopo
	Description
	genTopo
	Default Values
	Example Usage

	genWork
	Description
	genWork
	Default Values
	Flags
	Example Usage



